2[3x-1]4[x+2]=84

Simple and best practice solution for 2[3x-1]4[x+2]=84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2[3x-1]4[x+2]=84 equation:


Simplifying
2[3x + -1] * 4[x + 2] = 84

Reorder the terms:
2[-1 + 3x] * 4[x + 2] = 84

Reorder the terms:
2[-1 + 3x] * 4[2 + x] = 84

Reorder the terms for easier multiplication:
2 * 4[-1 + 3x][2 + x] = 84

Multiply 2 * 4
8[-1 + 3x][2 + x] = 84

Multiply [-1 + 3x] * [2 + x]
8[-1[2 + x] + 3x * [2 + x]] = 84
8[[2 * -1 + x * -1] + 3x * [2 + x]] = 84
8[[-2 + -1x] + 3x * [2 + x]] = 84
8[-2 + -1x + [2 * 3x + x * 3x]] = 84
8[-2 + -1x + [6x + 3x2]] = 84

Combine like terms: -1x + 6x = 5x
8[-2 + 5x + 3x2] = 84
[-2 * 8 + 5x * 8 + 3x2 * 8] = 84
[-16 + 40x + 24x2] = 84

Solving
-16 + 40x + 24x2 = 84

Solving for variable 'x'.

Reorder the terms:
-16 + -84 + 40x + 24x2 = 84 + -84

Combine like terms: -16 + -84 = -100
-100 + 40x + 24x2 = 84 + -84

Combine like terms: 84 + -84 = 0
-100 + 40x + 24x2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(-25 + 10x + 6x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(-25 + 10x + 6x2)' equal to zero and attempt to solve: Simplifying -25 + 10x + 6x2 = 0 Solving -25 + 10x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -4.166666667 + 1.666666667x + x2 = 0 Move the constant term to the right: Add '4.166666667' to each side of the equation. -4.166666667 + 1.666666667x + 4.166666667 + x2 = 0 + 4.166666667 Reorder the terms: -4.166666667 + 4.166666667 + 1.666666667x + x2 = 0 + 4.166666667 Combine like terms: -4.166666667 + 4.166666667 = 0.000000000 0.000000000 + 1.666666667x + x2 = 0 + 4.166666667 1.666666667x + x2 = 0 + 4.166666667 Combine like terms: 0 + 4.166666667 = 4.166666667 1.666666667x + x2 = 4.166666667 The x term is 1.666666667x. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667x + 0.6944444447 + x2 = 4.166666667 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667x + x2 = 4.166666667 + 0.6944444447 Combine like terms: 4.166666667 + 0.6944444447 = 4.8611111117 0.6944444447 + 1.666666667x + x2 = 4.8611111117 Factor a perfect square on the left side: (x + 0.8333333335)(x + 0.8333333335) = 4.8611111117 Calculate the square root of the right side: 2.204792759 Break this problem into two subproblems by setting (x + 0.8333333335) equal to 2.204792759 and -2.204792759.

Subproblem 1

x + 0.8333333335 = 2.204792759 Simplifying x + 0.8333333335 = 2.204792759 Reorder the terms: 0.8333333335 + x = 2.204792759 Solving 0.8333333335 + x = 2.204792759 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 2.204792759 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 2.204792759 + -0.8333333335 x = 2.204792759 + -0.8333333335 Combine like terms: 2.204792759 + -0.8333333335 = 1.3714594255 x = 1.3714594255 Simplifying x = 1.3714594255

Subproblem 2

x + 0.8333333335 = -2.204792759 Simplifying x + 0.8333333335 = -2.204792759 Reorder the terms: 0.8333333335 + x = -2.204792759 Solving 0.8333333335 + x = -2.204792759 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -2.204792759 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -2.204792759 + -0.8333333335 x = -2.204792759 + -0.8333333335 Combine like terms: -2.204792759 + -0.8333333335 = -3.0381260925 x = -3.0381260925 Simplifying x = -3.0381260925

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.3714594255, -3.0381260925}

Solution

x = {1.3714594255, -3.0381260925}

See similar equations:

| -38=4(n-2)+2n | | -6k+7k=1k | | 4h^2-32h-180=0 | | -6y-60x=42 | | 1+6x=-x+1 | | 2(3x+4)-5=15x+3-9x | | x^2-5x-62=0 | | 7+v=-3 | | -2(3-k)=30 | | -6-8x+6=-16 | | 5=u+7 | | 4x^2-3x+k=0 | | -3y+-27x=15 | | 6y+5=40 | | -8-2b-4b=-14 | | 4v-13-10v=12-34v+5 | | 4-4a+3a=9 | | -4j^2-80j=-116 | | 5x+7-2x=-8 | | -12(k-12)=-9(1+7k) | | 7+W=-8 | | 8(n+7)=-10-3n | | x^2-kx+27=0 | | 4-8n=6(3n+6)+6n | | 3q+100p-1800=0 | | 12+9X=40 | | 3.1x=2.4x+4.2 | | d+4.8=31 | | 35=7y+13y-5 | | 36x-18y=54 | | v^2-26v=31 | | (-7x)-4=17 |

Equations solver categories